Abstract

Atom-probe field-ion microscopy (APFIM) is used to study partitioning of the alloying elements between the γ (FCC) and γ′ (L12) phases and their segregation behavior at γ/γ′ interfaces of a Rene N6 nickel-based superalloy. The atomic-scale resolution and real space reconstruction capability for elemental chemical mapping makes three-dimensional atom-probe microscopy especially suitable for subnanoscale investigations of complex multicomponent superalloys. Concentration profiles of this alloy, obtained from an atom probe analysis, reveal the partitioning behavior of the alloying elements in Rene N6. As anticipated, the matrix strengtheners, such as Mo and W, are partitioned to the γ (FCC) matrix, while Re segregates at the γ/γ′ interfaces; the Gibbsian interfacial excess of Re is determined by both one-dimensional (2.32 atoms nm−2) and three-dimensional atom-probe microscopies (3.92 atoms nm−2) and the values obtained are in reasonable agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.