Abstract

Soil organic matter (SOM) turnover is crucial for soil quality and fertility in biogeochemical carbon cycle dynamics that can influence the fluxes of greenhouse gases. This research was focused to acquire deeper understanding of the mechanisms leading to decomposition of plant tissue and SOM persistence against both aerobic and anaerobic biodegradation. Decomposition rates of a various biomass types were studied conducting experiments in both aerobic and anaerobic environments. Different analytical approaches were applied in order to characterize biomass at chemical and physical levels. Combined statistical approaches were used to examine the relationships between carbon mineralization and chemical/physical characteristics. The obtained results revealed that degradation was significantly and negatively correlated with the micro-porosity surface (surface of pores of 0.3–1.5 nm of diameter). The multiple regressions performed by using partial least squares modelling enabled describing biomass biodegradability under either aerobic and anaerobic condition by using micro-porosity and aromatic-C content (assumed to be representative of lignin) as independent variables (R2 = 0.97, R cv 2 = 0.95 for aerobic condition; R2 = 0.99, R cv 2 = 0.98 for anaerobic condition, respectively). These results corroborate the hypothesis that plant tissues are physically protected from enzymatic attack by a microporous “sheath” that limits enzyme penetration into cell wall, and demonstrate the key role played by aromatic carbon, because of its chemical protection of the other cell wall polymers and its contribution to the three-dimensional (3D) cell wall structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.