Abstract

The early stages of nucleation and growth of atomic layer deposition (ALD) platinum on SrTiO3 (001) have been studied. Scanning electron microscopy reveals the ALD Pt deposits as discrete nanoparticles that grow and coalesce with increasing number of ALD cycles, ultimately resulting in a continuous film after ∼40 cycles. Atomic force microscopy shows the films to be fine-grained and highly conformal such that the 0.4 nm atomic steps of the underlying SrTiO3 (001) surface remain visible even after 80 Pt ALD cycles. Grazing-incidence small-angle X-ray scattering (GISAXS) studies demonstrate that the early stages of Pt ALD yields nanoparticles that are well approximated as cylinders with a height to radius ratio that is nearly unity. Consistent with nanoparticle coalescence, GISAXS also reveals an interparticle spacing that increases with the number of ALD cycles. X-ray fluorescence measurements of the Pt coverage reveal growth dynamics in which the Pt deposition is initially faster than the steady-state gro...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.