Abstract

In the natural world, bottom-up hierarchical construction of complex structures results in materials with remarkable properties. A well known example is the nacre of mollusk shells, commonly called "mother of pearl", whose excellent strength and toughness has been the subject of research for many decades. A significant discovery has been the presence of periodic layers called "growth lines". These are thin distinct layers within the bulk of the shell which form periodically, with their structure affected by environmental changes. Studies of their formation and behavior offer valuable insight into the architecture of seashells. In this work, the structure and mechanical behavior of growth lines in shells of abalone Haliotis gigantea were investigated using electron microscopy and nanoindentation. Growth lines form directly out of nacre into layers of blocks and irregular particles. In comparison to nacre, they have basic structures, form rapidly, and are harder, which suggest that they serve a protective role during lifecycle transitions. This exemplifies how natural structures are able to closely control growth architecture in order to form different structures for different functions, all from the same base materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.