Abstract
Adiabatic compressibility βS of the 4-methylpyridine + water solution is investigated in a wide concentration and temperature variation interval using Mandelstam–Brillouin scattering spectroscopy. The adiabatic compressibility minimum caused by the microinhomogeneous structure of the solution is experimentally established at the concentration of 0.06 molar fractions of 4-methylpyridine in the solution. The results of the investigations allow the construction of a diagram of possible states caused by a continuous three-dimensional hydrogen bond network of water. The results of experimental study of the excessive hypersound absorption in acetone + water and 3-methylpyridine + water solutions are discussed based on the conclusions of the theory of high-frequency sound scattering near the critical point (developed by Chaban) and the Landau theory. These results are described within the framework of the Landau and Chaban theories and explained by the existence of two different states with minimum thermodynamic stability in the solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.