Abstract

We describe a Kelvin Probe Force Microscopy (KPFM) study on the morphological and electronic properties of complex mono and bi-molecular ultrathin films self-assembled on mica. These architectures are made up from an electron-donor (D), a synthetic all-benzenoid polycyclic aromatic hydrocarbon, and an electron-acceptor (A), perylene-bis-dicarboximide. The former molecule self-assembles into fibers in single component films, while the latter molecule forms discontinuous layers. Taking advantage of the different solubility and self-organizing properties of the A and D molecules, multicomponent ultrathin films characterized by nanoscale phase segregated fibers of D embedded in a discontinuous layer of A are formed. The direct estimation of the surface potential, and consequently the local workfunction from KPFM images allow a comparison of the local electronic properties of the blend with those of the monocomponent films. A change in the average workfunction values of the A and D nanostructures in the blend occurs which is primarily caused by the intimate contact between the two components and the molecular order within the nanostructure self-assembled at the surface. Additional roles can be ascribed to the molecular packing density, to the presence of defects in the film, to the different conformation of the aliphatic peripheral chains that might cover the conjugated core and to the long-range nature of the electrostatic interactions employed to map the surface by KPFM limiting the spatial and potential resolution. The local workfunction studies of heterojunctions can be of help to tune the electronic properties of active multicomponent films, which is crucial for the fabrication of efficient organic electronic devices as solar cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call