Abstract

This paper characterizes nanoscale soil-water retention mechanism of unsaturated clay through molecular dynamics simulation. Series of molecular dynamics simulations of clay at low degrees of saturation were conducted. Soil water was represented by a point cloud through the centre-of-massmethod. Water-air interface area was measured numerically by the alpha shape method. Spatial variation of water number density is characterized and used to determine the adsorbed water layer. The soil-water retention mechanism at the nanoscale was analysed by distinguishing adsorptive pressure and capillary pressure at different mass water contents and considering apparent interface area (water-air interface area per unit water volume).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.