Abstract

The abrasion response of cross sectional areas of enamel was studied by sliding a rounded diamond conical nano-indenter tip across the surface. The nano-indenter tip (radius approximately 1,200 nm) was scanned over a specific squared area with a load of 400 microN. Two different environments were chosen: Hank's balanced salt solution (HBSS) and atmospheric laboratory condition. SEM (Scanning Electron Microscopy) and AFM (Atomic Force Microscopy) were used to characterize the final abraded areas. In addition, single scratches with linear incremented load were performed. The normal load and displacement data were utilized in a complementary manner to support the proposed deformation mechanisms. Greater orientation dependence for the case of the single scratches in relation to the abrasion tests was found. The latter results are discussed in terms of plastic deformation effects. The abrasion mechanisms were found to be the same for both wet and dry measurements and similar to that described in a previous study (Guidoni et al., Wear 266:60-68, 2009; Guidoni, Nano-scale mechanical and tribological properties of mineralized tissues. PhD. Montan University Leoben, Leoben, Austria, 2008). However, scratch deformation under fluid measurements shows greater recovery effects and abrasion resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.