Abstract

A new carbonaceous nanohoop, [4]cyclopara-1,2-diphenylethylene ([4]CPDPE, composed by four 1,2-diphenylethylene units linked via the para of the phenyls), is designed together with two rational synthesis paths being proposed. The Saturn-like host-guest systems formed with the [4]CPDPE nanoring and fullerene C60/70 are explored using density functional theory calculations. The results evidence that the geometry mutual matching between [4]CPDPE and C60/70 is perfect, and the [4]CPDPE⊃C60/70 complexes could be formed spontaneously with high binding energies. Thermodynamic calculation results show that it essentially prefers to selectively recognize C70 over its smaller cousin C60. More interestingly, the [4]CPDPE nanoring could present the regular ring cylinder and the saddle shapes via configuration transformation between its all-trans form and all-cis form, so as to theoretically realize the fullerene encapsulation and release under photoirradiation. Furthermore, the 2:1 interaction structure ([4]CPDPE2⊃Dimer-C60) and properties are investigated. Additionally, the ultraviolet-visible (UV-vis) spectra are simulated, and host-guest noncovalent interaction (NCI) regions are investigated based on the electron density and reduced density gradient (RDG), which may be helpful for a deep understanding of the present designed systems in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call