Abstract
The current study details nanosecond laser-based rapid melting and crystallization of thin amorphous silicon (a-Si) films at the nanoscale using two different optical near-field processing schemes. Both apertureless and tapered fiber near-field scanning optical microscope probes were utilized to deliver highly confined irradiation on the target surface. The various modification regimes produced as a result of the rapid a-Si melting and crystallization transformations were shown to critically depend on the applied laser fluence. Consequently, the crystallized pattern morphology and feature size could be finely controlled. High energy density was observed to impart ablation surrounded by a narrow melt ring. At much lower incident laser energy density, single nanostructures with a lateral dimension of approximately 90 nm were defined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.