Abstract

Nanoscale systems possessing long-lived spins and the ability to coherently couple to light are highly demanded for quantum devices implementations. Several approaches, like NV centers in diamond, semiconductor quantum dots are intensively investigated in the field, where an outstanding challenge is to preserve properties, and especially optical and spin coherence lifetimes, at the nanoscale. In this context, chemically synthesized Eu3+ doped Y2O3 nanoparticles have demonstrated great potential for quantum technologies based on their narrow optical homogeneous linewidth, down to the 10 kHz level, and millisecond-long spin coherence time. Here, we investigate an alternative nanoscale material: Pr3+: Y2O3. We first determine the Pr3+ hyperfine structure in Y2O3 by spectral hole burning and then measure photon and spin echoes from nanoparticles down to 150 nm. Spin T2 up to 880 μs was obtained for the ±3/2↔±5/2 hyperfine transition at 10.42 MHz, a value which exceeds that of bulk Pr3+doped crystals so far reported. These promising results confirm nanoscale Pr3+:Y2O3 as a very appealing candidate to integrate quantum devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.