Abstract

Various compositional, depositional and maturity related influencing factors affect the complex pore structure of coal. To study the pore structural evolution at nanoscale, a well characterized sample set of vitrinite-rich Carboniferous coals from the Ukrainian Donets Basin, covering a maturity interval from 0.69 to 1.47%Rr, was selected. Conventional bright field transmission electron microscopy (BF TEM) and high-resolution TEM (HRTEM) imaging was used to directly determine pore size distributions, pore morphology, geometry factors and other structural features, while gas invasion techniques such as low-pressure gas adsorption (CO2 and N2) were used for the investigation of micro- and mesopore structural parameters. High-pressure CH4 sorption experiments revealed changes in the methane storage capacity within the investigated maturity range, while associated structural changes of vitrinite were monitored by Raman spectroscopy. The results indicate pore occlusion in vitrinite mainly at peak oil window maturity, the sensibility of micro- and mesopore structure to thermal maturity and the importance of organic sulphur as a catalyst for kinetics of structural modification. Observed structural changes at 1.10%Rr were related to the onset of wet-gas generation.A structural control on micromechanical properties of vitrinite is indicated by the correlation between reduced elastic moduli from a previous study and average nanopore diameters obtained by HRTEM. The applied comprehensive approach improved the understanding of depositional and maturity-related processes that may affect pore evolution and resulting gas storage capacity of coals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.