Abstract

The study of scanning tunneling microscopy (STM) induced localized degradation and polarity dependent breakdown (BD) of HfO 2 /SiO x dielectric stacks is presented in this work, together with a correlated investigation of the BD locations by transmission electron microscopy (TEM). The localized dielectric BD events are also analysed using conductive-atomic force microscopy. The analysis of the degradation and breakdown phenomenon has been performed from a macroscopic (device) level to a localized nanometer scale BD location. A new technique is adopted to induce the degradation and BD of the HfO 2 /SiO x dielectric stacks locally using a combined STM/scanning electron microscopy nano-probing system. The BD locations were identified on blanket wafers and gate electrode area of the dielectric, and the sample containing these regions was prepared using focused ion beam for the physical analysis using TEM. This method of analysis is very useful in studying the nature of the BD events in dielectrics with and without the gate electrode, elucidating the role of the gate electrode in dielectric BD events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.