Abstract

Due to the development of advanced electronic systems, there is an urgent need for polymer dielectric film capacitors with high breakdown strength (Eb) and high discharge energy density (Ud) at elevated temperatures. Herein, an all-organic blend polymer composite is fabricated by blending polyetherimide (PEI) and a trace amount of Poly(vinylidene fluoride) (PVDF), achieving nanoscale phase separation and forming interfaces between PEI and PVDF grain. The real permittivity (εr) and Eb of blend composites are simultaneously enhanced after PVDF introduction. It is worth noting that increasing the temperature does not reduce the Eb of the PEI/xPVDF blend composite. Our Study shows that optimizing the plasticity and storage modulus of PEI/xPVDF significantly contributes to maintaining Eb at elevated temperatures. Additionally, high temperatures enhance the entanglement of molecular chains at the PVDF-PEI interface, further supporting the preservation of Eb. Finally, a high Eb of 540 MV/m, a high Ud of 5.92 J/cm3 are achieved for the PEI/0.5PVDF blend at 150 °C. This work presents a new approach to enhance the Eb of dielectric polymers by optimizing mechanical properties at high temperature, which providing a different strategy for enhancing the energy storage performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.