Abstract

Ion beam proximity lithography (IBL) is a technique where a broad beam of energetic light ions floods a stencil mask and transmitted beamlets transfer the mask pattern to resist on a substrate. With a depth-of-field up to 20000 times larger than the minimum feature size and the high-throughput potential of a parallel exposure tool, IBL is very attractive for prototyping and manufacturing nanoelectromechanical systems over the steep topography of micromachined silicon wafers. This paper reports a conformal resist coating process that unlocks this potential. This negative-tone resist, plasma-polymerized methyl methacry- late, has a sensitivity of 27 muC/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> and a contrast of 1.3 for 30-keV He <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> ion exposures and amyl acetate developer. Sub-100-nm features have been printed down the sidewall and across a membrane at the bottom of a 500-mum-deep anisotropically etched pit in a silicon wafer. Pattern fidelity is near 2 nm for 10-nm features. Lines have also been formed on unpolished substrates, including rolled titanium foils and coarse-ground silicon wafers. Patterns on ground silicon have been etched into the surface using a nickel hard mask and SF <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">6</sub> /O <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> reactive ion etching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call