Abstract

Metallic glass, with its unique disordered atomic structure and high density of low-coordination sites, is regarded as the most competitive new catalyst for environmental catalysis. However, the efficiency and stability of metallic glass catalysts are often affected by their atomic configuration. Thus, the design and regulation of the nanoscale structure of metallic glasses to improve their catalytic efficiency and stability remains a challenge. Herein, a non-noble component, Fe75 P15 C10 amorphous ribbon, is used as a precursor to fabricate a hierarchical gradient catalyst with nanoscale heterogeneous and oxygenous amorphous structure by simple annealing and acid-immersing. The resulting catalyst offers an ultrahigh catalytic ability of kSA• C0 = 3101mgm-2 min-1 and excellent reusability of 39 times without efficiency decay in dye wastewater degradation. Theoretical calculations indicate that the excellent catalytic performance of the catalyst can be attributed to its unique heterogeneous nanoglass structure, which induces oxygen atoms. Compared to the FePC structure, the FeP/FePCO structure exhibits strong charge transferability, and the energy barrier of the rate-determining steps of the conversion of S2 O8 2- to SO4 -• is reduced from 2.52 to 0.97eV. This study reveals that a heterogeneous nanoglass structure is a new strategy for obtaining high catalytic performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.