Abstract

BackgroundThe osseointegration of zirconia implants has been evaluated based on their implant fixture bonding with the alveolar bone at the optical microscopic level. Achieving nano-level bonding between zirconia and bone apatite is crucial for superior osseointegration; however, only a few studies have investigated nanoscale bonding. This review outlines zirconia osseointegration, including surface modification, and presents an evaluation of nanoscale zirconia-apatite bonding and its structure. HighlightAssuming osseointegration, the cells produced calcium salts on a ceria-stabilized zirconia substrate. We analyzed the interface between calcium salts and zirconia substrates using transmission electron microscopy and found that 1) the cell-induced calcium salts were bone-like apatite and 2) direct nanoscale bonding was observed between the bone-like apatite and zirconia crystals without any special modifications of the zirconia surface. ConclusionStructural affinity exists between bone apatite and zirconia crystals. Apatite formation can be induced by the zirconia surface. Zirconia bonds directly with apatite, indicating superior osseointegration in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call