Abstract

To introduce coexistence of several ordering parameters in a material is a key but a very challenging goal in correlated materials, which can bring many novel phenomena and offer unprecedented opportunities for new device functions. Here, we demonstrate a general route to induce nanoscale periodic ferroelastic twins in otherwise weak- or non-ferroelastic perovskite oxides by coherently propagating ferroelastic twins in template materials into atop other films through unique structure coupling at perovskite oxide interfaces. Using the LaCoO3 thin film as a template and deliberately growing La2/3Sr1/3MnO3/LaCoO3 on the NdGaO3 (110) substrate, we were able to realize uniaxially and periodically ordering nanoscale ferroelastic twins in LaCoO3, and more importantly, such ferroelastic domain structure can be coherently transferred into La2/3Sr1/3MnO3. The uniaxial periodic ferroelastic twins in La2/3Sr1/3MnO3 can induce strong magnetic anisotropy which can compete with magneto-crystalline anisotropy, illustrating strong coupling between the ferromagnetism and ferroelasticity in La2/3Sr1/3MnO3. Our results provide a meaningful reference toward desired ferrelasticity for generating multiferrocity and developing novel oxide electronics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call