Abstract

Diffuse scattering – the coherently scattered intensity that is not localised on the reciprocal lattice – contains a wealth of information about the local order (order on the nanoscale) in crystalline materials. Since molecules and atoms will respond most strongly to their local chemical environments, it is a valuable tool in understanding how structure leads to properties. However, at present its collection and analysis are relatively specialised. Monte Carlo (MC) computer simulation of a model structure has become a powerful and well-accepted technique for aiding the interpretation and analysis of diffuse scattering patterns. Its great strength is its flexibility – as long as an MC energy can be defined, a model can be developed and tested. At one extreme a very simplified model may be useful in demonstrating particular qualitative effects, while at the other a quantitative and very detailed description of disordered structures can be obtained. Examples discussed include new results concerning p-chloro-N-(p-chloro-benzylidene)aniline, a molecule showing various degrees of molecular flexibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.