Abstract

Nanoscale optical writing using far-field super-resolution methods provides an unprecedented approach for high-capacity data storage. However, current nanoscale optical writing methods typically rely on photoinitiation and photoinhibition with high beam intensity, high energy consumption, and short device life span. We demonstrate a simple and broadly applicable method based on resonance energy transfer from lanthanide-doped upconversion nanoparticles to graphene oxide for nanoscale optical writing. The transfer of high-energy quanta from upconversion nanoparticles induces a localized chemical reduction in graphene oxide flakes for optical writing, with a lateral feature size of ~50 nm (1/20th of the wavelength) under an inhibition intensity of 11.25 MW cm-2 Upconversion resonance energy transfer may enable next-generation optical data storage with high capacity and low energy consumption, while offering a powerful tool for energy-efficient nanofabrication of flexible electronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call