Abstract

Optical parametric amplification (OPA) is a nonlinear process through which a low-power input wave is amplified by extracting energy from an interaction medium that is energized by a high-intensity pump wave. For a significant amplification of an input wave, a sufficiently long interaction medium is required, which is usually on the order of a few centimeters. Therefore, in the small scale, OPA is considered unfeasible, and this prevents it from being employed in micro and nanoscale devices. There have been recent studies that proposed microscale OPA through the use of micro-resonators. However, there is currently no study that has suggested high-gain nanoscale OPA, which could be quite useful for implementing nanoscale optical devices. This study aims to show that nanoscale OPA is feasible through the concurrent maximization of the pump wave induced electric energy density and the polarization density (nonlinear coupling strength) within the interaction medium, which enables a very high amount of energy to be transferred to the input wave that is sufficient to amplify the input wave with a gain factor that is comparable to those provided by centimeter scale nonlinear crystals. The computational results of our OPA model match with the experimental ones in the context of sum-harmonic generation, which is the wave-mixing process that gives rise to OPA, with an accuracy of 97.6%. The study aims to make room for further investigation of nanoscale OPA through adaptive optics and/or nonlinear programming algorithms for the enhancement of the process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.