Abstract

We demonstrate optical imaging with a resolution of around 50 nm on an electroluminescent polymer by conducting atomic force microscopy. The results indicate that brighter light emission occurs from asperities on the polymer surface. By comparing surface morphologies of the polymer and the indium tin oxide substrate, it is found that similar asperities exist on both surfaces and the polymer becomes thinner on these locations. Therefore, stronger luminescence intensity from asperities is caused by higher electric field due to reduced polymer thickness. The present method can also be extended to obtain simultaneous optical and electrical transport properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.