Abstract

In this study, a phase-change memory device was fabricated and the origin of device failure mode was examined using transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDS). Ge 2Sb 2Te 5 (GST) was used as the active phase-change material in the memory device and the active pore size was designed to be 0.5 μ m. After the programming signals of more than 2 × 1 0 6 cycles were repeatedly applied to the device, the high-resistance memory state ( reset) could not be rewritten and the cell resistance was fixed at the low-resistance state ( set). Based on TEM and EDS studies, Sb excess and Ge deficiency in the device operating region had a strong effect on device reliability, especially under endurance-demanding conditions. An abnormal segregation and oxidation of Ge also was observed in the region between the device operating and inactive peripheral regions. To guarantee an data endurability of more than 1 × 1 0 10 cycles of PRAM, it is very important to develop phase-change materials with more stable compositions and to reduce the current required for programming.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call