Abstract

Extension of nuclear magnetic resonance (NMR) to nanoscale samples has been a longstanding challenge because of the insensitivity of conventional detection methods. We demonstrated the use of an individual, near-surface nitrogen-vacancy (NV) center in diamond as a sensor to detect proton NMR in an organic sample located external to the diamond. Using a combination of electron spin echoes and proton spin manipulation, we showed that the NV center senses the nanotesla field fluctuations from the protons, enabling both time-domain and spectroscopic NMR measurements on the nanometer scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.