Abstract

Magnetic nano-objects, namely antiskyrmions and Bloch skyrmions, have been found to coexist in single-crystalline lamellae formed from bulk crystals of inverse tetragonal Heusler compounds with D2d symmetry. Here evidence is shown for magnetic nano-objects in epitaxial thin films of Mn2 RhSn formed by magnetron sputtering. These nano-objects exhibit a wide range of sizes with stability with respect to magnetic field and temperature that is similar to single-crystalline lamellae. However, the nano-objects do not form well-defined arrays, nor is any evidence found for helical spin textures. This is speculated to likely be a consequence of the poorer homogeneity of chemical ordering in the thin films. However, evidence is found for elliptically distorted nano-objects along perpendicular crystallographic directions within the epitaxial films, which is consistent with elliptical Bloch skyrmions observed in single-crystalline lamellae. Thus, these measurements provide strong evidence for the formation of noncollinear spin textures in thin films of Mn2 RhSn. Using these films, it is shown that individual nano-objects can be deleted using a local magnetic field from a magnetic tip and collections of nano-objects can be similarly written. These observations suggest a path toward the use of these objects in thin films with D2d symmetry as magnetic memory elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.