Abstract

This paper presents on electromechanical characterization of thin film nickel-based wrinkled electrodes for dielectric elastomer (DE) applications. The investigation of a sandwich composed of a very soft and flexible elastomer carrying an ultrathin metallic electrode, together with its prestretch-dependent wrinkled structure of the electrode, facilitates the understanding of some of its interesting properties. Compared to conventional screen-printed carbon black electrodes, nickel-based thin film electrodes offer an ohmic resistance that is about 2 orders of magnitude lower. This remarkable feature makes it an advantageous electrode material alternative for the development of energy-efficient and high-frequency DE applications. Ultrathin (10-20 nm) layers are sputter deposited as electrodes onto either biaxially or, under pure-shear conditions, uniaxially prestretched silicone membranes. After the sputtering process, the membranes are allowed to relax whereby wrinkled out-of-plane buckled surfaces are obtained. With an initial resistance smaller than 400 Ω/square and a strong adhesion to the silicone, some electrode configurations are able to withstand strains up to 200% while remaining electrically conductive. A linear dependence of the capacitance on strain is revealed, as well as a long-term stability over 10 million cycles of mechanical stretching. All investigated thin film configurations of nickel and nickel-carbon films are suitable as compliant electrodes for DE actuators, as demonstrated by measuring the force characteristics with and without a high voltage. An increased level of prestretch shifts the resistance threshold of the electrode layers to even higher strain levels. In general, the best performance is achieved with pure metallic electrodes deposited on biaxially prestretched silicone membranes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.