Abstract

This paper studies a mode-III nanocrack at the interface between two bonded dissimilar materials under antiplane shear loading. The classical elasticity incorporating surface elasticity is applied to solve a mixed boundary value problem associated with an anti-plane shear interface crack. The influence of surface elasticity on the crack-tip field for a nanoscale mode-III crack is analyzed. By use of the Fourier transform, the problem is reduced to a set of hypersingular integro-differential equations. The displacement and bulk stress jumps are expanded as the Chebyshev orthogonal polynomials and the Galerkin method is used to approximately determine the singular elastic field near the interface crack tips. Consideration of surface elasticity does not cause the disappearance of crack-tip singularity. A usual inverse square-root singularity is derived near the crack tips. The influences of surface elasticity on the stress intensity factor are examined and displayed graphically. The surface residual stress does not alter the stress field for a mode-III interface crack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.