Abstract

The rock-salt structural manganous sulfide (α-MnS) is of higher lithium storage capacity. To improve the cyclability of α-MnS anode in lithium-ion batteries, we prepared a composite of α-MnS nanocrystallites grown on nitrogen and sulfur co-doped reduced graphene oxide (rGO) honeycomb framework. N and S atoms have been co-doped into rGO along with the growth of the α-MnS nanocystallites by a one-pot hydrothermal synthesis using thiourea as dopant and reactant. The typical α-MnS/NS co-doped rGO (NSG) composite electrode exhibits a reversible capacity as high as 763.5mAhg−1 after 100 cycles at 100mAg−1, and a reversible capacity of 576.7mAhg−1 even after 2000 cycles at 1000mAg−1. More importantly, the α-MnS/NSG composite electrodes show superior cycle performance at asymmetric discharge/charge current densities. The excellent electrochemical performance can be attributed to that the α-MnS nanocrystallites shorten lithium ion transmission distance, N-S co-doping improves the electronic conductivity of rGO, and the formation of chemical bonds combination between α-MnS and NSG enhances the electrode structural stability and the electron transport. In addition, more stable architecture of NSG-supported ultrafine α-MnS particles is formed upon cycling, which greatly enhances the electrical contact and further improves the electrochemical performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.