Abstract

The paper analyzes the nature of constant low-temperature impact toughness in low-carbon low-alloy 10Mn2VNbAl steel after helical rolling at 850°C. The analysis shows that when rolled, the steel changes the electronic spectrum via shifting its low-energy states in the reciprocal space of lattice curvature to higher levels which are vacant in the initial material. Such interstitial states provide the growth of interstitial bainite islands capable for adaptive rotations under shock loads, and this makes the rolled steel constant in low-temperature impact toughness up toT = –70°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call