Abstract

In many insects the surface of the eye is nanostructured by arrays of protuberances termed ommatidial gratings which provide the cuticle with anti-reflective, anti-wetting and self-cleaning properties. The hypothesised anti-contamination role of the gratings against dust and pollen results from theoretical predictions on grating geometry and experiments on synthetic replicas of ommatidia surfaces but has not yet been proven in an animal. Whiteflies are biological test beds for anti-contamination surfaces because they deliberately distribute wax particles extruded from abdominal plates over their entire bodies. The numerous particles protect the animal against water evaporation and radiation, but may severely impair vision. Using scanning electron microscopy (SEM) and CryoSEM, we here show that the cornea of whiteflies exhibits ~ 220 nm wide mesh-like structures forming hexagonal gratings with thin ~ 40 nm connecting walls. Quantitative measurements of wax particles on the eye show that the nanostructures reduce particle contamination by more than ~ 96% compared to other areas of the cuticle. Altogether, our study is the first description of a predicted optimized grating geometry for anti-contamination in an arthropod. The findings serve as evidence of the high effectiveness of nanostructured surfaces for reducing contact area and thus adhesion forces between biological surfaces and contaminating particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.