Abstract

Phase transitions that are thermally induced by using light at the nanoscale play a vital role in material science. Enhanced optical heating sustained by resonant nanostructures can turn out to be insignificant when a higher thermal conductivity of a heatsink, regardless of the pumping intensity. In this Letter, we demonstrate an approach to control an operating temperature range due to excess heating of a structured heatsink. A design rationale has been performed by using a 2D array of TiN:Si voxels, consisting of stacked TiN and Si pillars. All the TiN nanoheaters responsible for enhanced light absorption at plasmon resonance are of equal size, and the height of the Si pillars varies to control heat localization. A height-dependent temperature rise of the Si pillars is found from Raman thermometry. Herein, for the first time, we have determined the melting temperature of azobenzene-functionalized polymers at the nanoscale using the tunable plasmonic metasurface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.