Abstract
Ion transport and regulation are fundamental processes for various devices and applications related to energy storage and conversion, environmental remediation, sensing, ionotronics, and biotechnology. Wood-based materials, fabricated by top-down or bottom-up approaches, possess a unique hierarchically porous fibrous structure that offers an appealing material platform for multiscale ion regulation. The ion transport behavior in these materials can be regulated through structural and compositional engineering from the macroscale down to the nanoscale, imparting wood-based materials with multiple functions for a range of emerging applications. A fundamental understanding of ion transport behavior in wood-based structures enhances the capability to design high-performance ion-regulating devices and promotes the utilization of sustainable wood materials. Combining this unique ion regulation capability with the renewable and cost-effective raw materials available, wood and its derivatives are the natural choice of materials toward sustainability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.