Abstract

Scanning electrochemical microscopy (SECM) enables high-resolution imaging by examining the amperometric response of an ultramicroelectrode tip near a substrate. Spatial resolution, however, is compromised for nonflat substrates, where distances from a tip far exceed the tip size to avoid artifacts caused by the tip-substrate contact. Herein, we propose a new imaging mode of SECM based on real-time analysis of the approach curve to actively control nanoscale tip-substrate distances without contact. The power of this software-based method is demonstrated by imaging an insulating substrate with step edges using standard instrumentation without combination of another method for distance measurement, e.g., atomic force microscopy. An ∼500 nm diameter Pt tip approaches down to ∼50 nm from upper and lower terraces of a 500 nm height step edge, which are located by real-time theoretical fitting of an experimental approach curve to ensure the lack of electrochemical reactivity. The tip approach to the step edge can be terminated at <20 nm prior to the tip-substrate contact as soon as the theory deviates from the tip current, which is analyzed numerically afterward to locate the inert edge. The advantageous local adjustment of tip height and tip current at the final point of tip approach distinguishes the proposed imaging mode from other modes based on standard instrumentation. In addition, the glass sheath of the Pt tip is thinned to ∼150 nm to rarely contact the step edge, which is unavoidable and instantaneously detected as an abrupt change in the slope of approach curve to prevent damage of the fragile nanotip.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.