Abstract

Spontaneous aggregation of amyloid beta (Aβ) proteins leading to the formation of oligomers and eventually into fibrils has been identified as a key pathological signature of Alzheimer's disease. The structure of late-stage aggregates have been studied in depth by conventional structural biology techniques, including nuclear magnetic resonance, X-ray crystallography, and infrared spectroscopy; however, the structure of early-stage aggregates is less known due to their transient nature. As a result, the structural evolution of amyloid aggregates from early oligomers to mature fibrils is still not fully understood. Here, we have applied atomic force microscopy-infrared nanospectroscopy to investigate the aggregation of Aβ 16-22, which spans the amyloidogenic core of the Aβ peptide. Our results demonstrate that Aβ 16-22 involves a structural transition from oligomers with parallel β-sheets to antiparallel fibrils through disordered and possibly helical intermediate fibril structures, contrary to the known aggregation pathway of full-length Aβ.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.