Abstract

Tumor cell exosomes play a very important role in the process of tumor cell proliferation and metastasis. However, due to the nanoscale size and high heterogeneity of exosomes, in-depth understanding of their appearance and biological characteristics is still lacking. Expansion microscopy (ExM) is a method that embeds biological samples in a swellable gel to physically magnify the samples to improve the imaging resolution. Before the emergence of ExM, scientists had invented several super-resolution imaging techniques that could break the diffraction limit. Among them, single molecule localization microscopy (SMLM) usually has the best spatial resolution (20–50 nm). However, considering the small size of exosomes (30–150 nm), the resolution of SMLM is still not high enough for detailed imaging of exosomes. Hence, we propose a tumor cell exosomes imaging method that combines ExM and SMLM (i.e. Expansion SMLM, denoted as ExSMLM), which can realize the expansion and super-resolution imaging of tumor cell exosomes. In this technique, immunofluorescence was first performed to fluorescently label the protein markers on the exosomes, then the exosomes were polymerized into a swellable polyelectrolyte gel. The electrolytic nature of the gel made the fluorescently labeled exosomes undergo isotropic linear physical expansion. The expansion factor obtained in the experiment was about 4.6. Finally, SMLM imaging of the expanded exosomes was performed. Owing to the improved resolution of ExSMLM, nanoscale substructures of closely packed proteins were observed on single exosomes, which has never been achieved before. With such a high resolution, ExSMLM would have a great potential in detailed investigation of exosomes and exosome-related biological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.