Abstract

The local enhancement of few-cycle laser pulses by plasmonic nanostructures opens up for spatiotemporal control of optical interactions on a nanometer and few-femtosecond scale. However, spatially resolved characterization of few-cycle plasmon dynamics poses a major challenge due to the extreme length and time scales involved. In this Letter, we experimentally demonstrate local variations in the dynamics during the few strongest cycles of plasmon-enhanced fields within individual rice-shaped silver nanoparticles. This was done using 5.5 fs laser pulses in an interferometric time-resolved photoemission electron microscopy setup. The experiments are supported by finite-difference time-domain simulations of similar silver structures. The observed differences in the field dynamics across a single particle do not reflect differences in plasmon resonance frequency or dephasing time. They instead arise from a combination of retardation effects and the coherent superposition between multiple plasmon modes of the particle, inherent to a few-cycle pulse excitation. The ability to detect and predict local variations in the few-femtosecond time evolution of multimode coherent plasmon excitations in rationally synthesized nanoparticles can be used in the tailoring of nanostructures for ultrafast and nonlinear plasmonics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.