Abstract
Glass particles with dimensions typically ranging from tens to hundreds of microns are often used in glass corrosion research in order to accelerate testing. Two-dimensional and three-dimensional nanoscale imaging techniques are badly needed to characterize the alteration layers at the surfaces of these corroded glass particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) can provide a lateral resolution as low as ∼100nm, and, compared to other imaging techniques, is sensitive to elements lighter than carbon. In this work, we used ToF-SIMS to characterize the alteration layers of corroded international simple glass (ISG) particles. At most particle surfaces, inhomogeneous or no alteration layers were observed, indicating that the thickness of the alterations layers may be too thin to be observable by ToF-SIMS imaging. Relatively thick (e.g., 1–10µm) alteration layers were inhomogeneously distributed at a small portion of surfaces. More interestingly, some large-size (tens of microns) glass particles were fully altered. Above observations suggest that weak attachment and the defects on ISG particle surfaces play an important role in ISG glass corrosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.