Abstract
The photoelectrochemical performance of thin film photoelectrodes can be impacted by deviations from the stoichiometric composition, both at the macroscale and at the nanoscale. This issue is especially pronounced for the class of ternary compounds that are currently investigated for simultaneously achieving the optoelectronic characteristics and chemical stability required for solar fuel generation. Here, we combine macroscopic photoelectrochemical testing with atomic force microscopy (AFM) and scanning transmission X-ray microscopy (STXM) to reveal relationships between photoelectrochemical activity, nanoscale morphology, and local chemical composition in copper vanadate (CVO) thin films as a model system. For films with varying Cu/(Cu + V) ratios around the ideal stoichiometry of stoiberite Cu5V2O10, AFM resolves submicrometer morphology variations, which correlate with variations of the Cu content resolved by STXM. Both stoichiometric and Cu-deficient films exhibit a clear photoresponse, which indicates electronic tolerance to reduced Cu content. While both films exhibit homogeneous O and V content, they are also characterized by local regions of Cu enrichment and depletion that extend beyond individual grains. By contrast, Cu-rich photoelectrodes exhibit a tendency toward CuO secondary phase formation and a significantly reduced photoelectrochemical activity, indicating a significantly poor electronic tolerance to Cu-enrichment. These findings highlight that the average film composition at the macroscale is insufficient for defining structure-function relationships in complex ternary compounds. Rather, correlating microscopic variations in chemical composition to macroscopic photoelectrochemical performance provides insights into photocatalytic activity and stability that are otherwise not apparent from pure macroscopic characterization.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.