Abstract
Methylation changes at cytosine-guanine dinucleotide (CpG) sites in genes are closely related to cancer development. Thus, detection and quantification of low-abundance methylated DNA is critical for early diagnosis. Here, we report an atomic force microscopy (AFM)-based quantification method for DNA that contains methyl-CpG at a specific site, without any treatment to the target DNA such as chemical labeling, fluorescence tagging, or amplification. We employed AFM-tip-tethered methyl-CpG-binding proteins to probe surface-captured methylated DNA. We observed a linear correlation (R2 = 0.982) between the input copy number and detected copy number, in the low copy number regime (10 or fewer; subattomolar concentrations). For a mixture of methylated and nonmethylated DNA that resembles clinical samples, we were still able to quantify the methylated DNA. These results highlight the potential of our force-mapping-based quantification method for wide applications in early detection of diseases associated with methylated DNA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.