Abstract

Various molecular weight π-conjugated donor-acceptor polymers based on thiadiazole and thiophene units are investigated with respect to nanoscale film morphology and digital memory performance. Interestingly, all polymers reveal excellent n-type digital permanent memory characteristics, which are governed by the combination of Ohmic and trap-limited space charge limited conductions via a hopping process using thiadiazole and thiophene units as charge traps and stepping stones. The digital memory performance is significantly influenced by the film morphology details that vary with the polymer molecular weight as well as the film thickness. A higher population of face-on structure formation, as well as higher molecular weight, provides a wider film thickness window of digital memory operation. Overall, π-conjugated PBTDzTV polymers are suitable for the production of high-performance, programmable n-type permanent memory devices with very low power consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.