Abstract

Available, easy and fast fabrication methods of nanostructured surfaces, and the knowledge that cells in vivo interacts with nanometer-sized structures/objects, led us to study the impact of nanotopography on cell morphology and cytokine production. Uroepithelial cells were seeded on three different substrate types: two with defined nanometer topographies and a flat control, all three having identical surface chemistry. The nanostructured substrates contained hemispherical pillars or step edges, the latter in the form of parallel grooves and ridges. Qualitative and quantitative analysis of cell morphology and cytokine production were studied. Both quantities were significantly different between cells cultured on hemispherically structured surfaces compared to flat control surfaces. Cells cultured on hemispherically structured surfaces showed a decrease in IL-6 and IL-8 production and were less spread, less round and more stellate (larger dispersion). Only cell morphology differed between cells cultured on grooved surfaces and flat control surfaces. These findings suggest that epithelial cell morphology and cytokine production are dependent on the underlying nanotopography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call