Abstract

Well-aligned zinc oxide nanorod arrays (ZNAs) synthesized using chemical bath deposition were fabricated on a gallium-doped zinc oxide substrate, and the effects of varying the precursor concentrations on the growth and nanoscale electrical properties of the ZNAs were investigated. The as-synthesized ZNAs were characterized using field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), conducting atomic force microscopy (CAFM), and scanning surface potential microscopy (SSPM). The FESEM and AFM images show that the growth rate in terms of length and diameter is highly sensitive to the precursor concentration. CAFM and SSPM analyses indicate that when concentrations of both the zinc acetate and hexamethylenetetramine solutions were 30 mM, the coverage percentages of the recordable and conducting regions on the ZNA surface were 48.3% and 0.9%, which is suitable for application in resistive random access memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.