Abstract

Solutions of the aromatic dipeptide derivative molecule fluorenylmethoxycarbonyl-diphenylalanine (Fmoc-FF) in dimethyl sulfoxide produce fibrous gels when mixed with water. We study the evolution of density fluctuations of this three-component system using X-ray photon correlation spectroscopy (XPCS) and compare these results to the macroscopic rheology of the gels and optical observations of the microstructure evolution. At the investigated scattering angles, the intensity autocorrelation functions do not follow behavior expected for simple diffusion of individual Fmoc-FF molecules localized within cages of nearest neighbors. Instead, the dynamics are associated with density fluctuations on length scales of ~10-100 nm arising from disaggregation and reformation of fibers, leading to an increasingly uniform network. This process is correlated with the growth of the elastic modulus, which saturates at long times. Autocorrelation functions and relaxation times acquired from XPCS measurements are consistent with relaxation rates of structures at dynamic equilibrium. This study provides further support to the concept of exploring peptide-based gelators as valence-limited patchy particles capable of forming equilibrium gels.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.