Abstract

How to induce nanoscale directional motion via some intrinsic mechanisms pertaining to a nanosystem remains a challenge in nanotechnology. Here we show via molecular dynamics simulations that there exists a fundamental driving force for a nanoscale object to move from a region of lower stiffness toward one of higher stiffness on a substrate. Such nanoscale directional motion is induced by the difference in effective van der Waals potential energy due to the variation in stiffness of the substrate; i.e., all other conditions being equal, a nanoscale object on a stiffer substrate has lower van der Waals potential energy. This fundamental law of nanoscale directional motion could lead to promising routes for nanoscale actuation and energy conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.