7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1116/1.1768529
Copy DOIPublication Date: Jul 1, 2004 | |
Citations: 21 |
We have used conductive atomic force microscopy to image the nanoscale current distribution in SrTiO3 grown epitaxially on n+-Si by molecular beam epitaxy. Topographic and current images were obtained simultaneously in contact mode with a bias voltage applied to the sample. Topographic images show a flat surface with a roughness of about 0.5 nm. Current images show small areas with local current flow on the order of pA for voltages larger than ∼2 V in forward bias and larger than ∼4 V in reverse bias. Histograms of the magnitude of the electrical current show a relatively narrow log-normal distribution, suggesting a common current mechanism with a Gaussian distribution in a parameter on which the current depends exponentially. Analysis of current images and histograms over a range of bias voltages suggests thermionic emission as the dominant current mechanism, rather than conduction associated with localized defects such as pin-holes, threading dislocations or grain boundaries. The analysis yields a barrier height of ∼0.5–0.6 eV with and a relative dielectric constant of 5–15, which is in reasonable agreement with previous reports using a dead layer model.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.