Abstract

Nanosizing confers unique functions in materials such as graphene and quantum dots. Here, we present two nanoscale-covalent organic frameworks (nano-COFs) that exhibit exceptionally high activity for photocatalytic hydrogen production that results from their size and morphology. Compared to bulk analogues, the downsizing of COFs crystals using surfactants provides greatly improved water dispersibility and light-harvesting properties. One of these nano-COFs shows a hydrogen evolution rate of 392.0 mmol g−1 h−1 (33.3 μmol h−1), which is one of the highest mass-normalized rates reported for a COF or any other organic photocatalysts. A reverse concentration-dependent photocatalytic phenomenon is observed, whereby a higher photocatalytic activity is found at a lower catalyst concentration. These materials also show a molecule-like excitonic nature, as studied by photoluminescence and transient absorption spectroscopy, which is again a function of their nanoscale dimensions. This charts a new path to highly efficient organic photocatalysts for solar fuel production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.