Abstract

Grain boundary (GB) corrosion of Al alloy is often ascribed to the anodic dissolution of nanoscale MgZn2 precipitates formed along the GB. However, this reaction has not been confirmed by direct observation and does not explain the subsequent process to form a large-scale pit. Here, we clarify these points by directly visualizing changes in nanoscale structures and potential (∼local corrosion cell) distributions during the GB corrosion in the H2SO4 solution by open-loop electric potential microscopy (OL-EPM). The potential images unambiguously confirm the anodic dissolution of the MgZn2 precipitates induced by immersion into the H2SO4 solution. In addition, we found that erosion of the GB after MgZn2 dissolution is driven by hydrogen embrittlement (HE) until another underlying MgZn2 precipitate is exposed. These nanolevel understandings should help improve the susceptibility of Al alloys to stress corrosion cracking originating from the GB corrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.