Abstract

Not all regions of optical field nanolocalization and enhancement are suitable sites for chemical transformations on plasmonic metals. We illustrate the concept using chemically functionalized monocrystalline gold platelets in aqueous solution imaged using a Au-coated tip-enhanced Raman scattering (TERS) probe. For our proof-of-principle study, we select a model plasmon-driven chemical process, namely, the dimerization of p-nitrothiophenol (NTP) to dimercaptoazobenzene. Consistent with recent observations from our group, we find that TERS maps at vibrational resonances corresponding to NTP trace the optical fields that are maximally enhanced toward the edges of the platelets. Conversely, simultaneously recorded product maps reveal that the dimerization process occurs only at specific sites on our substrate. Given the uniformity of the structures and local optical fields at the edges of the gold platelets, our results suggest that molecular crowding and steric effects play a key role in our case of plasmon-driven NTP dimerization at the gold-water interface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call