Abstract

Electrochemical tip-enhanced Raman spectroscopy (EC-TERS), which provides molecular fingerprint information with nanometer-scale spatial resolution, is a promising technique to study the structure-activity relationships of the electrochemical interface. In this work, we developed the electrochemical tip-enhanced Raman spectroscopy (EC-TERS) that possesses high sensitivity and nanoscale spatial resolution, as well as methods to fabricate TERS tips with a high enhancement. Based on the developed systems, we in-situ monitor the plasmon driven decarboxylation reaction. The spatial distribution of the effective hot carriers was visualized by TERS imaging of the nanoscale reaction region, which provides mechanistic insights into plasmon driven reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.