Abstract

Recent experiments demonstrate molecular chemotaxis or altered diffusion rates of enzymes in the presence of their own substrates. We show here an important implication, namely, that if a nanoscale catalyst A produces a small-molecule ligand product L which is the substrate of another catalyst B, the two catalysts will attract each other. We explore this nonequilibrium producer recruitment force (ProRec) in a reaction–diffusion model. The predicted cat–cat association will be the strongest when A is a fast producer of L and B is a tight binder to it. ProRec is a force that could drive a mechanism (the catpath mechanism) by which catalysts could become spatially localized into functional pathways, such as in the biochemical networks in cells, which can achieve complex goals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.